Affiliation:
1. Center for Marine Magnetism (CM2) Department of Ocean Science and Engineering Southern University of Science and Technology Shenzhen China
2. Department of Geosciences University of Tübingen Tübingen Germany
Abstract
AbstractThermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of magnetite‐bearing basalt during heating‐cooling cycles to ∼340°C, with a large thermal hysteresis and similar starting and ending values, even in multiple repeated cycles, ruling out changes in magnetic mineralogy. Based on FORC diagrams and published results of engineered materials, we propose that thermal hysteresis arises from configurations of magnetic moments in clusters of single‐domain particles due to dipolar coupling, with different collective behavior during heating and cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual nanoparticles. FORC and κ‐T results indicate an increase in effective particle sizes after 700°C‐heating. Our results are a warning against premature interpretation of a decreasing trend in κ‐T curves by maghemite inversion. Instead, fine particle behavior should be considered when a hump‐shaped κ‐T behavior is detected.
Funder
National Natural Science Foundation of China
Deutsche Forschungsgemeinschaft
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献