Kinematic Slip Evolution During the 2022 Ms 6.8 Luding, China, Earthquake: Compatible With the Preseismic Locked Patch

Author:

Guo Rumeng1ORCID,Li Luning12,Zhang Wenting123,Zhang Yijun1ORCID,Tang Xiongwei12ORCID,Dai Kun1ORCID,Li Yu4,Zhang Lupeng5,Wang Jingqi16

Affiliation:

1. State Key Laboratory of Geodesy and Earth's Dynamic Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan China

2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

3. The Second Monitoring and Application Center China Earthquake Administration Xi'an China

4. China Earthquake Networks Center China Earthquake Administration Beijing China

5. Southwest Jiaotong University Faculty of Geosciences and Environmental Engineering Southwest Jiaotong University Chengdu China

6. School of Geography and Information Engineering China University of Geosciences Wuhan China

Abstract

AbstractThe September 2022 Ms 6.8 Luding earthquake broke more than 230 years of seismic calm on the Moxi fault, providing a unique opportunity to understand its seismogenic environment, rupture dynamics, and seismic hazard. Using teleseismic body waves, regional strong‐motion observations, GNSS, and InSAR data, we decipher the spatiotemporal rupture evolution of the mainshock. Combining the elastic dislocation model with surface creep, we find that the coseismic slip correlates closely with a locked patch with a loading rate of 9.7 mm/yr, but the creeping rate is insufficient to make up the shallow slip deficit. Notably, the Luding earthquake ruptured only ∼1/4 of the Moxi seismic gap, and it further increased the stress in the unruptured northern part. We thus argue that the Moxi fault has the potential for magnitude 7+ earthquakes in the near future, although geodetic prediction may overestimate the actual seismic moment released by the coseismic rupture.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3