Affiliation:
1. School of Earth Science and Engineering Guangdong Provincial Key Laboratory of Geodynamics and Geohazards Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
2. School of Geographical and Earth Sciences University of Glasgow Glasgow UK
Abstract
AbstractEffective moisture (EM) distribution in the Indian summer monsoon (ISM) region is strongly related to regional topography. An understanding of climate change and the interactions between climate variables can help predict future climate variations. Here, we reconstruct a stack EM record for Southwest China over the past 90 kyr using environmental magnetism in lake sediment. The EM in Southwest China at the orbital scale was closely linked to precession‐induced change in North Hemisphere solar insolation, as well as the ISM variability. However, at the glacial‐interglacial scale, it was decoupled with ISM intensity, being wetter during glacial periods (weakened ISM) and drier during interglacial periods (enhanced ISM). Combined with modern meteorological observations, we suggest that the topographical barrier effect and temperature induced dryness are responsible for the decoupling between ISM intensity and EM. The terrestrial topography and temperature strongly influence EM distribution by altering the dynamics of onshore airflow and evapotranspiration.
Funder
Guangdong Province Introduction of Innovative R&D Team
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献