High‐Resolution Broadband Lg Attenuation Structure of the Anatolian Crust and Its Implications for Mantle Upwelling and Plateau Uplift

Author:

Zhu Wei‐Mou12ORCID,Zhao Lian‐Feng13ORCID,Xie Xiao‐Bi4,He Xi1ORCID,Zhang Lei15,Yao Zhen‐Xing1ORCID

Affiliation:

1. Key Laboratory of Earth and Planetary Physics Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

3. Heilongjiang Mohe Observatory of Geophysics Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

4. Institute of Geophysics and Planetary Physics University of California at Santa Cruz Santa Cruz CA USA

5. School of Earth and Space Sciences Institute of Theoretical and Applied Geophysics Peking University Beijing China

Abstract

AbstractThe Anatolian Plateau, currently experiencing rapid uplift and westward escape, records both the termination of oceanic subduction and the conversion to continental collision. The crustal response to the transition of the subduction environment from eastern to western Anatolia can be inferred by the seismic velocity and attenuation structures. With this study, we construct a broadband Lg‐wave attenuation model for the Anatolian Plateau and use it to constrain lateral crust heterogeneities linked to this transition. Crustal Lg attenuation links late Cenozoic magmatism with asthenospheric upwelling by characterizing the lithospheric thermal structure. The widely distributed strong attenuation observed in eastern Anatolia may be related to the crustal partial melting due to mantle upwelling after the delamination and subsequent break‐off of the Bitlis slab. Lithospheric dripping in central Anatolia likely facilitates the mantle flows through the window between the Cyprus and Aegean slabs, which results in the piecemeal low anomaly in central Anatolia.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3