A Transformer‐Based Deep Learning Model for Successful Predictions of the 2021 Second‐Year La Niña Condition

Author:

Gao Chuan12ORCID,Zhou Lu13,Zhang Rong‐Hua234ORCID

Affiliation:

1. Key Laboratory of Ocean Circulation and Waves Institute of Oceanology Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China

2. Laoshan Laboratory Qingdao China

3. University of Chinese Academy of Sciences Beijing China

4. School of Marine Sciences Nanjing University of Information Science and Technology Nanjing China

Abstract

AbstractA purely data‐driven and transformer‐based model with a novel self‐attention mechanism (3D‐Geoformer) is used to make predictions by adopting a rolling predictive manner similar to that in dynamical coupled models. The 3D‐Geoformer yields a successful prediction of the 2021 second‐year cooling conditions that followed the 2020 La Niña event, including covarying anomalies of surface wind stress and three‐dimensional (3D) upper‐ocean temperature, the reoccurrence of negative subsurface temperature anomalies in the eastern equatorial Pacific and a corresponding turning point of sea surface temperature (SST) evolution in mid‐2021. The reasons for the successful prediction with interpretability are explored comprehensively by performing sensitivity experiments with modulating effects on SST due to wind and subsurface thermal forcings being separately considered in the input predictors for prediction. A comparison is also conducted with physics‐based modeling, illustrating the suitability and effectiveness of 3D‐Geoformer as a new platform for El Niño and Southern Oscillation studies.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3