Affiliation:
1. Lyles School of Civil Engineering Purdue University West Lafayette IN USA
2. School of Civil and Environmental Engineering University of New South Wales Sydney NSW Australia
3. Taylor Geospatial Institute Saint Louis University St Louis MO USA
Abstract
AbstractThe effect of climate change on precipitation intensity is well documented. However, findings regarding changes in spatial extent of extreme precipitation events are still ambiguous as previous studies focused on particular regions and time domains. This study addresses this ambiguity by investigating the pattern of changes in the spatial extent of short duration extreme precipitation events globally. A grid‐based indicator termed Spatial‐Homogeneity is proposed and used to assess the changes of spatial extent in Global Precipitation Measurement records. This study shows that (a) rising temperature causes significant shrinking of precipitation extent in tropics, but an expansion of precipitation extent in arid regions, (b) storms with higher precipitation intensity show a faster decrease in spatial extent, and (c) larger spatial extent storms are associated with higher total precipitable water. Results imply that in a warming climate, tropics may experience severe floods as storms may become more intense and spatially concentrated.
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献