Asymmetric Influences of ENSO Phases on the Predictability of North Pacific Sea Surface Temperature

Author:

Hou Zhaolu1ORCID,Li Jianping12ORCID,Diao Yina1ORCID,Zhang Yazhou1,Zhong Quanjia3ORCID,Feng Jie45ORCID,Qi Xin1ORCID

Affiliation:

1. College of Oceanic and Atmospheric Sciences/Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Physical Oceanography/Academy of the Future Ocean/Innovation Center for Ocean Carbon Neutrality Ocean University of China Qingdao China

2. Laoshan Laboratory Qingdao China

3. Department of Ocean Science Hong Kong University of Science and Technology Hong Kong China

4. Department of Atmospheric and Oceanic Sciences/Institute of Atmospheric Sciences Fudan University Shanghai China

5. Shanghai Key Laboratory of Ocean‐Land‐Atmosphere Boundary Dynamics and Climate Change Fudan University Shanghai China

Abstract

AbstractThe North Pacific sea surface temperature (SST) has a profound climatic influence. The El Niño‐Southern Oscillation (ENSO) significantly impacts the North Pacific SST; however, the influence of the distinct phases of ENSO on SST predictability remains unclear. To overcome the model limitations, this study assessed SST predictability under diverse ENSO phases using reanalysis. The predictability limit of the North Pacific SST under La Niña (8.4 months) is longer than that under Neutral (5.9 months) and El Niño (5.5 months) conditions, which unveils asymmetry. This asymmetry mirrors contemporary multimodal prediction skills. Error growth dynamics reveal La Niña's robust signal strength with a slow error growth rate, in contrast to El Niño's weaker signal and faster error growth. There exhibits intermediate signal strength and elevated error growth in Neutral condition. Physically, predictability signal strength aligns with SST variability, whereas the error growth rate correlates with atmospheric‐ocean heating anomalies. La Niña, which induces positive heating anomalies, minimizes the impact of atmospheric noise, resulting in lower error growth. The result is beneficial for improving North Pacific SST predictions.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3