On the Role of Indian Ocean SST in Influencing the Differences in Atmospheric Variability Between 2020–2021 and 2021–2022 La Niña Boreal Winters

Author:

Zhang Tao12ORCID,Kumar Arun2ORCID

Affiliation:

1. ESSIC University of Maryland College Park MD USA

2. NOAA/NCEP/Climate Prediction Center College Park MD USA

Abstract

AbstractThe difference in observed atmospheric anomalies over the Northern Hemisphere winter between 2021–22 and 2020–21 La Niña years indicated a tripole pattern consisting of a Japan cyclone, a Bering Sea anticyclone, and a cyclone over the North American continent. This feature, however, was not replicated in the North American Multi‐Model Ensemble (NMME) forecasts. A set of model sensitivity experiments was performed to better understand the cause of this discrepancy. The results revealed the possible role of the influence of sea surface temperature (SST) anomalies, particularly over the Indian Ocean, on the observed circulation differences that was further modulated by internal atmospheric variability. The failure in predicting circulation changes in NMME was next attributed to the errors in SST predictions over the Indian Ocean and highlights the need for improvements in SST forecasts over this region.

Funder

Climate Program Office

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3