Trapped and Leaking Energetic Particles in Injection Flux Tubes of Saturn's Magnetosphere

Author:

Yin Ze‐Fan12ORCID,Sun Yi‐Xin1ORCID,Zhou Xu‐Zhi1ORCID,Pan Dong‐Xiao3ORCID,Yao Zhong‐Hua4ORCID,Yue Chao1ORCID,Hu Ze‐Jun2ORCID,Roussos Elias5ORCID,Blanc Michel6ORCID,Lai Hai‐Rong7ORCID,Zong Qiu‐Gang1ORCID

Affiliation:

1. School of Earth and Space Sciences Peking University Beijing China

2. MNR Key Laboratory for Polar Science Polar Research Institute of China Shanghai China

3. School of Geophysics and Information Technology China University of Geosciences Beijing China

4. Key Laboratory of Earth and Planetary Physics Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

5. Max Planck Institute for Solar System Research Göttingen Germany

6. Institut de Recherche en Astrophysique et Planétologie Toulouse France

7. School of Atmospheric Sciences Sun Yat‐sen University Zhuhai China

Abstract

AbstractIn Saturn's magnetosphere, the radially‐inward transport of magnetic fluxes is usually carried by localized flux tubes with sharply‐enhanced equatorial magnetic fields. The flux tubes also bring energetic particles inward, which are expected to drift azimuthally and produce energy‐dispersive signatures. Spacecraft observations, however, indicate the occurrence of energy‐dispersionless signatures for perpendicular‐moving particles. These unexpected features are attributed to the sharp magnetic gradient at the edge of the flux tubes, which significantly modifies the drift trajectories of perpendicular‐moving particles to enable their trapping motion within the flux tubes. The bouncing particles are less affected by the gradient, and therefore, still display energy‐dispersive signatures. It is the distinct particle behavior, together with different spacecraft traversal paths, that underlies the observational diversity. The results improve our understanding of particle dynamics in the magnetospheres of giant planets and indicate that pitch‐angle information should be considered in the extraction of flux‐tube properties from energetic particle observations.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3