Affiliation:
1. Department of Atmospheric and Oceanic Sciences School of Physics Peking University Beijing China
2. School of Atmospheric Sciences Nanjing University Nanjing China
Abstract
AbstractNortheast China (NEC) is one of the most severely impacted regions by fire and biomass burning in the country. Notably, fires in this area have exhibited an increasing trend over the past decade, contrasting with the extensive pollution reduction observed in other parts of China. In this study, we combine observational data analysis and climate model simulations to demonstrate that the escalation of spring fire activities in NEC is likely induced by a decline in Bering Sea ice concentration during preceding months. This Arctic‐driven teleconnection contributes to increased temperatures and decreased precipitation in NEC through reduced vertical wind shear, anomalously northerly wind transport, and the formation of a high‐pressure center with descending airflow. These changes are conducive to fire ignition and expansion. Furthermore, this linkage may be amplified in future warmer scenarios. This mechanism holds significant implications for predicting decadal fire activity and furthering our understanding of global environmental projections.
Funder
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献