Increasing Fire Weather Potential Over Northeast China Linked to Declining Bering Sea Ice

Author:

Liu Guanyu1,Li Jing1ORCID,Ying Tong1,Su Hongxuan1,Huang Xin2ORCID,Yu Yan1ORCID

Affiliation:

1. Department of Atmospheric and Oceanic Sciences School of Physics Peking University Beijing China

2. School of Atmospheric Sciences Nanjing University Nanjing China

Abstract

AbstractNortheast China (NEC) is one of the most severely impacted regions by fire and biomass burning in the country. Notably, fires in this area have exhibited an increasing trend over the past decade, contrasting with the extensive pollution reduction observed in other parts of China. In this study, we combine observational data analysis and climate model simulations to demonstrate that the escalation of spring fire activities in NEC is likely induced by a decline in Bering Sea ice concentration during preceding months. This Arctic‐driven teleconnection contributes to increased temperatures and decreased precipitation in NEC through reduced vertical wind shear, anomalously northerly wind transport, and the formation of a high‐pressure center with descending airflow. These changes are conducive to fire ignition and expansion. Furthermore, this linkage may be amplified in future warmer scenarios. This mechanism holds significant implications for predicting decadal fire activity and furthering our understanding of global environmental projections.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3