Affiliation:
1. Cooperative Institute for Research in the Atmosphere Colorado State University Fort Collins CO USA
Abstract
AbstractIn many applications of data assimilation, especially when the size of the problem is large, a substantial assumption is made: all variables are well‐described by Gaussian error statistics. This assumption has the advantage of making calculations considerably simpler, but it is often not valid, leading to biases in forecasts or, even worse, unphysical predictions. We propose a simple, but effective, way of replacing this assumption, by making use of transforming functions, while remaining consistent with Bayes' theorem. This method allows the errors to have any value of the skewness and kurtosis, and permits physical bounds for the variables. As such, the error distribution can conform better to the underlying statistics, reducing biases introduced by the Gaussian assumption. We apply this framework to a 3D variational data assimilation method, and find improved performance in a simple atmospheric toy model (Lorenz‐63), compared to an all‐Gaussian technique.
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献