M‐ENIAC: A Physics‐Informed Machine Learning Recreation of the First Successful Numerical Weather Forecasts

Author:

Brecht Rüdiger1ORCID,Bihlo Alex2

Affiliation:

1. Department of Mathematics University Hamburg Hamburg Germany

2. Department of Mathematics and Statistics Memorial University of Newfoundland St. John’s Newfoundland Canada

Abstract

AbstractIn 1950 the first successful numerical weather forecast was obtained by solving the barotropic vorticity equation using the Electronic Numerical Integrator and Computer (ENIAC), which marked the beginning of the age of numerical weather prediction. Here, we ask the question of how these numerical forecasts would have turned out, if machine learning based solvers had been used instead of standard numerical discretizations. Specifically, we recreate these numerical forecasts using physics‐informed neural networks. We show that physics‐informed neural networks provide an easier and more accurate methodology for solving meteorological equations on the sphere, as compared to the ENIAC solver.

Publisher

American Geophysical Union (AGU)

Reference41 articles.

1. The quiet revolution of numerical weather prediction

2. Automatic differentiation in machine learning: A survey;Baydin A. G.;Journal of Machine Learning Research,2018

3. A generative adversarial network approach to (ensemble) weather prediction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3