Brittle Deformation of Damaged Mafic and Ultramafic Rocks and Their Implications on Plate Bending

Author:

Jayawickrama Eranga1ORCID,Akamatsu Yuya2ORCID,Katayama Ikuo1ORCID

Affiliation:

1. Department of Earth and Planetary Systems Science Hiroshima University Higashi‐Hiroshima Japan

2. Research Institute for Marine Geodynamics Japan Agency for Marine‐Earth Science and Technology (JAMSTEC) Yokosuka Japan

Abstract

AbstractThe effect of damage on the brittle deformation of mafic and ultramafic rocks has been investigated by performing triaxial deformation experiments on thermally cracked and intact rock samples. The investigation was performed by recording the axial and lateral strains during deformation while simultaneously capturing the ultrasonic velocity, and electrical resistivity. While the peak strength is presumably controlled by the stiff intrinsic fractures, the crack opening mode also showed critical effects on the attained peak strength. The pore pressure distribution showed an apparent control over the dynamic Young's modulus as the ratio between the dynamic and static modulus of thermally cracked rocks is significantly higher than that of intact rocks. The compliant nature and the higher inelastic volumetric strain of the thermally cracked samples further indicated a possible explanation to the steep dipping plates and the taller topographic heights at the trench outer rise systems of old subduction zones.

Funder

Japan Society for the Promotion of Science

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3