Affiliation:
1. Centre for Ocean and Atmospheric Sciences School of Environmental Sciences University of East Anglia Norwich UK
2. Environmental Science and Engineering California Institute of Technology Pasadena CA USA
3. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
Abstract
AbstractMeltwater content and pathways determine the impact of Antarctica's melting ice shelves on ocean circulation and climate. Using ocean glider observations, we quantify meltwater distribution and transport within the Bellingshausen Sea's Belgica Trough. Meltwater is present at different densities and with different turbidities: both are indicative of a layer's ice shelf of origin. To investigate how ice‐shelf origin separates meltwater into different export pathways, we compare these observations with high‐resolution tracer‐release model simulations. Meltwater filaments branch off the Antarctic Coastal Current into the southwestern trough. Meltwater also enters the Belgica Trough in the northwest via an extended western pathway, hence the greater observed southward (0.50 mSv) than northward (0.17 mSv) meltwater transport. Together, the observations and simulations reveal meltwater retention within a cyclonic in‐trough gyre, which has the potential to promote climactically important feedbacks on circulation and future melting.
Funder
European Research Council
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献