Machine Learning Interpretability of Outer Radiation Belt Enhancement and Depletion Events

Author:

Ma Donglai1ORCID,Bortnik Jacob1ORCID,Ma Qianli12ORCID,Hua Man1ORCID,Chu Xiangning3ORCID

Affiliation:

1. Department of Atmospheric and Oceanic Sciences University of California, Los Angeles Los Angeles CA USA

2. Center for Space Physics Boston University Boston MA USA

3. Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA

Abstract

AbstractWe investigate the response of outer radiation belt electron fluxes to different solar wind and geomagnetic indices using an interpretable machine learning method. We reconstruct the electron flux variation during 19 enhancement and 7 depletion events and demonstrate the feature attribution analysis called SHAP (SHapley Additive exPlanations) on the superposed epoch results for the first time. We find that the intensity and duration of the substorm sequence following an initial dropout determine the overall enhancement or depletion of electron fluxes, while the solar wind pressure drives the initial dropout in both types of events. Further statistical results from a data set with 71 events confirm this and show a significant correlation between the resulting flux levels and the average AL index, indicating that the observed “depletion” event can be more accurately described as a “non‐enhancement” event. Our novel SHAP‐Enhanced Superposed Epoch Analysis (SHESEA) method can offer insight in various physical systems.

Funder

Defense Advanced Research Projects Agency

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3