Affiliation:
1. Department of Earth, Planetary, and Space Sciences University of California, Los Angeles Los Angeles CA USA
2. Department of Atmospheric and Oceanic Sciences University of California, Los Angeles Los Angeles CA USA
Abstract
AbstractThe substorm current wedge (SCW), the characteristic current system of Earth's substorms, has been suggested to be a collective effect of many “wedgelets,” mesoscale currents carried by magnetotail flux tubes of strong magnetic fields called dipolarizing flux bundles (DFBs). Each wedgelet contains an asymmetric pair of field‐aligned currents (FACs) so the net FAC of many wedgelets can equal an SCW's FAC content. It is unclear, however, why a wedgelet's FAC is asymmetric. To explore the reason, we investigate how earthward‐traveling DFBs interact with ambient plasma because this interaction leads to their FACs. The interaction is manifested as the pressure and magnetic field distributions around DFBs, which we examine statistically using THEMIS data. The statistical distributions are consistent with an interplay between the DFB‐caused mesoscale perturbations and the global magnetotail configuration and favor the rise of wedgelets' asymmetric FACs. This result reveals the importance of cross‐scale coupling in SCW formation.
Funder
Science Mission Directorate
National Aeronautics and Space Administration
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics