Downslope Weakening of Soil Revealed by a Rapid Robotic Rheometer

Author:

Ruck John G.1ORCID,Wilson Cristina G.2ORCID,Shipley Thomas3ORCID,Koditschek Daniel4,Qian Feifei5,Jerolmack Douglas16ORCID

Affiliation:

1. Department of Earth and Environmental Science University of Pennsylvania Philadelphia PA USA

2. Collaborative Robotics and Intelligent Systems Institute Oregon State University Corvallis OR USA

3. Department of Psychology Temple University Philadelphia PA USA

4. Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia PA USA

5. Department of Electrical Engineering University of Southern California Los Angeles CA USA

6. Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania Philadelphia PA USA

Abstract

AbstractMoving down a hillslope from ridge to valley, soil develops and becomes increasingly weathered. Downslope variation in clay content, organic matter, and porosity should produce concomitant changes in soil strength that influence slope stability and erosion. This has yet to be demonstrated, however, because in situ measurements of soil rheology are challenging and rare. Here we employ a robotic leg as a mechanically sensitive and time‐efficient penetrometer to map soil strength along a canonical temperate hillslope profile. We observe a systematic downslope weakening, and increasing heterogeneity, of soil strength associated with a transition from sand‐rich ridge materials to cohesive valley bottom soil aggregates. Weathering‐induced changes in soil composition lead to physically distinct mechanical behaviors in cohesive soils that depart from the behavior observed for sand. We also demonstrate the promise that legged robots may use their limbs to sense and improve mobility in complex environments, with implications for planetary exploration.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3