Affiliation:
1. School of Earth Sciences The Ohio State University Columbus OH USA
2. Department of Geology and Geophysics Texas A&M University College Station TX USA
Abstract
AbstractSubmarine landslides shape continental margins, transfer massive amounts of sediment downslope, and can generate deadly and destructive tsunamis. Submarine landslides are common globally, yet constraining hazard potential of future events is limited by a short historical record and a wide range of possible slide dynamics. We test a novel approach to investigate slide dynamics using properties of the deformation zone induced by a large submarine landslide along the Cascadia margin, offshore Oregon. We use a simple model of a line load on a poroelastic half space to show the deformation zone size required rapid transport and deceleration. We argue that the slide moved at high speeds, aided by low dynamic frictional resistance, suggesting this event could have generated a tsunami. This method is applicable where slide‐induced impact zones are observed.
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献