Regional Heatwave Prediction Using Graph Neural Network and Weather Station Data

Author:

Li Peiyuan1ORCID,Yu Yin2,Huang Daning2,Wang Zhi‐Hua3ORCID,Sharma Ashish145ORCID

Affiliation:

1. Discovery Partners Institute University of Illinois System IL Chicago USA

2. Department of Aerospace Engineering Pennsylvania State University PA University Park USA

3. School of Sustainable Engineering and the Built Environment Arizona State University AZ Tempe USA

4. Department of Atmospheric Sciences University of Illinois at Urbana‐Champaign IL Champaign USA

5. Environmental Science Division Argonne National Laboratory IL Lemont USA

Abstract

AbstractHeatwaves lead to catastrophic consequences on public health and the economy. Accurate and timely predictions of regional heatwaves can improve climate preparedness and foster decision‐making to alleviate the burdens due to climate change. In this paper, we propose a heatwave prediction algorithm based on a novel deep learning model, that is, Graph Neural Network (GNN). This new GNN framework can provide real time warnings of the sudden occurrence of regional heatwaves with high accuracy at lower costs of computation and data collection. In addition, its interpretable structure unravels the spatiotemporal patterns of regional heatwaves and helps to enrich our understanding of the general climate dynamics and the causal influences between locations. The proposed GNN framework can be applied for the detection and prediction of other extreme or compound climate events, which calls for future studies.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3