Affiliation:
1. Scripps Institution of Oceanography University of California San Diego La Jolla CA USA
Abstract
AbstractOcean dynamics at the submesoscale play a key role in mediating upper‐ocean energy dissipation and dispersion of tracers. Observations of ocean currents from synoptic mesoscale surveys at submesoscale resolution (250 m–100 km) from a novel airborne instrument (MASS DoppVis) reveal that the kinetic energy spectrum in the California Current System is nearly continuous from 100 km to sub‐kilometer scales, with a k−2 spectral slope. Although there is not a transition in the kinetic energy spectral slope, there is a transition in the dynamics to non‐linear ageostrophic interactions at scales of (1 km). Kinetic energy transfer across spatial scales is enabled by interactions between the rotational and divergent components of the flow field at the submesoscale. Kinetic energy flux is patchy and localized at submesoscale fronts. Kinetic energy is transferred both downscale and upscale from 1 km in the observations of a cold filament.
Funder
Earth Sciences Division
Office of Naval Research Global
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献