Scale‐Dependent Drivers of Marine Heatwaves Globally

Author:

Bian Ce1ORCID,Jing Zhao12ORCID,Wang Hong12ORCID,Wu Lixin12

Affiliation:

1. Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Physical Oceanography Ocean University of China Qingdao China

2. Laoshan Laboratory Qingdao China

Abstract

AbstractMarine heatwaves (MHWs) are prolonged extreme warm water events, threatening marine ecosystems. Understanding drivers of MHWs over the global ocean is essential for their forecast. Here, we use an eddy‐resolving coupled global climate model with improved realism of MHWs to evaluate the drivers of MHWs at different spatial scales, that is, MHWs defined based on temperature anomalies at different spatial scales. The properties of MHWs are scale‐dependent, being generally weaker, less frequent, and longer with increasing spatial scales. The primary driver of MHWs shifts from local oceanic intrinsic advection to atmospheric forcing as their spatial scale becomes larger. The transition spatial scale between the ocean and atmosphere‐driven regimes varies geographically, being larger in eddy‐rich regions but smaller in gyre interior. This study suggests the complicated dynamics of MHWs at different spatial scales and provides guidance on improving their forecast capacity.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3