Deep Convection as the Key to the Transition From Eocene to Modern Antarctic Circumpolar Current

Author:

Xing Qianjiang1ORCID,Klocker Andreas2ORCID,Munday David3ORCID,Whittaker Joanne1ORCID

Affiliation:

1. Institute for Marine and Antarctic Studies University of Tasmania Hobart Australia

2. NORCE Norwegian Research Centre Bjerknes Centre for Climate Research Bergen Norway

3. British Antarctic Survey Cambridge UK

Abstract

AbstractFrom the Eocene (∼50 million years ago) to today, Southern Ocean circulation has evolved from the existence of two ocean gyres to the dominance of the Antarctic Circumpolar Current (ACC). It has generally been thought that the opening of Southern Ocean gateways in the late Eocene, in addition to the alignment of westerly winds with these gateways or the presence of the Antarctic ice sheet, was a sufficient requirement for the transition to an ACC of similar strength to its modern equivalent. Nevertheless, models representing these changes produce a much weaker ACC. Here we show, using an eddying ocean model, that the missing ingredient in the transition to a modern ACC is deep convection around the Antarctic continent. This deep convection is caused by cold temperatures and high salinities due to sea‐ice production around the Antarctic continent, leading to both the formation of Antarctic Bottom Water and a modern‐strength ACC.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3