The Impact of Assimilating Cirrus‐Effected Infrared Satellite Radiance From the FY‐4A AGRI on Water Vapor Analysis and Rainstorm Forecasting

Author:

Xu Lan12ORCID,Liu Juanjuan12ORCID,Cheng Wei3,Wang Shudong4,Zhu Shujun1,He Yujun1ORCID,Liu Yiran12,Shen Xiao12,Wang Jing5,Fu Jinrong12,Jiao Yifeng12,Ma Yuanzhe12,Wang Bin12ORCID

Affiliation:

1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China

2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

3. Beijing Institute of Applied Meteorology Beijing China

4. Public Meteorological Service Center China Meteorological Administration Beijing China

5. Tianjin Meteorological Observatory Tianjin China

Abstract

AbstractIn this study, a method for assimilating FY4A advanced geostationary radiance imager (AGRI) cirrus‐effected radiances (CER) is investigated, and the impact of this method on water vapor analysis and rainstorm forecasting is examined through observing system simulation experiments and actual case experiments. The high proportion of inverted humidity profiles in the cirrus‐effected pixels is the main reason for the negative effect of assimilation in the mid‐to‐lower troposphere. To address this, relevant constraint conditions are incorporated into the cost function. The statistical results reveal that the addition of a CER assimilation improves the analysis increment of water vapor, with pattern correlation coefficients of 0.33, 0.35, and 0.20 at 200, 300, and 400 hPa, respectively, which are greater than those of a clear‐sky radiance assimilation (0.28, 0.33, and 0.17, respectively). Moreover, the inclusion of a CER assimilation greatly improves data utilization, and has a neutral to positive effect on precipitation forecasting.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3