On the Interplay Between Distributed Bulk Plasticity and Local Fault Slip in Evolving Fault Zone Complexity

Author:

Abdelmeguid Mohamed1ORCID,Mia Md Shumon23ORCID,Elbanna Ahmed24

Affiliation:

1. Graduate Aerospace Laboratories California Institute of Technology Pasadena CA USA

2. Department of Civil and Environmental Engineering University of Illinois at Urbana‐Champaign Urbana IL USA

3. Department of Mechanical Science and Engineering University of Illinois at Urbana‐Champaign Urbana IL USA

4. Beckman Institute of Advanced Science and Technology University of Illinois at Urbana‐Champaign Urbana IL USA

Abstract

AbstractWe numerically investigate the role of plastic strain accumulation on the mechanical response of a planar strike‐slip fault. Our models show that fault‐zone strength significantly impacts the ensuing sequence of earthquakes. Weaker fault zones accumulating more plastic strain promote more complexity in the seismicity pattern through aperiodic earthquake occurrences and intermittent episodes of rupture and arrest. However, if the fault zone strength is high enough, the overall earthquake sequence is characterized by periodic fault‐spanning events. We find that both the fault normal stress and the fault geometric profile evolve throughout the earthquake sequence, suggesting a self‐roughening mechanism. Despite the significant impact of plasticity on the fault response, the width of the plastically deforming region in the fault zone is small compared to the fault length. Our results suggest a rich behavior in dynamically evolving fault zones and support the need for further high‐resolution studies of the highly non‐linear near‐fault region.

Funder

National Science Foundation

U.S. Geological Survey

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3