Physical‐Dynamic‐Driven AI‐Synthetic Precipitation Nowcasting Using Task‐Segmented Generative Model

Author:

Wang Rui1,Fung Jimmy C. H.12ORCID,Lau Alexis K. H.13

Affiliation:

1. Division of Environment and Sustainability The Hong Kong University of Science and Technology Hong Kong Hong Kong

2. Department of Mathematics The Hong Kong University of Science and Technology Hong Kong Hong Kong

3. Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology Hong Kong Hong Kong

Abstract

AbstractPrecise and timely rainfall nowcasting plays a critical role in ensuring public safety amid disasters triggered by heavy precipitation. While deep‐learning models have exhibited superior performance over traditional nowcasting methods in recent years, their efficacy is still hampered by limited forecasting skill, insufficient training data, and escalating blurriness in forecasts. To address these challenges, we present the Synthetic‐data Task‐segmented Generative Model (STGM), an innovative physical‐dynamic‐driven heavy rainfall nowcasting model. The STGM encompasses three key components: the Long Video Generation (LVG) model generating synthetic radar data from observed radar images and data provided by the Weather Research and Forecasting (WRF) model, MaskPredNet predicting the spatial coverage of various rainfall intensities, and SPADE determining rainfall intensity based on the coverage provided by MaskPredNet. The STGM has demonstrated promising skill for precipitation forecasts for up to six hours, and significantly reduce the blurriness of predicted images, thus showcasing advances in rainfall nowcasting.

Funder

Research Grants Council, University Grants Committee

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3