Mixing Models With Multiple, Overlapping, or Incomplete End‐Members, Quantified Using Time Series of a Single Tracer

Author:

Kirchner James W.123ORCID

Affiliation:

1. Department of Environmental Systems Science ETH Zurich Zurich Switzerland

2. Swiss Federal Research Institute WSL Birmensdorf Switzerland

3. Department of Earth and Planetary Science University of California Berkeley CA USA

Abstract

AbstractMixing models are used throughout earth and environmental science to quantify the relative contributions of sources to mixtures, based on chemical or isotopic tracers. Often, however, some end‐members are missing or their tracer distributions overlap, precluding the use of conventional mixing models. Here I show how these constraints can be overcome by exploiting the information contained in tracer time‐series fluctuations. This approach, ensemble end‐member mixing analysis (EEMMA), can potentially quantify many sources using a single tracer, even if their mean concentrations are indistinguishable. EEMMA can also quantify source contributions when some sources are unknown, and even infer the tracer time series of a missing source. Benchmark tests with synthetic data verify the reliability of this approach, thus expanding the range of mixing models that can be quantified using tracer time series. An R script is provided for the necessary calculations, including error propagation.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3