Intense Magnetic Reconnection Process Embedded in Three‐Dimensional Turbulent Current Sheet

Author:

Liu Yi‐Nan12ORCID,Fujimoto Keizo12ORCID,Cao Jin‐Bin12ORCID

Affiliation:

1. School of Space and Environment Beihang University Beijing China

2. Key Laboratory of Space Environment Monitoring and Information Processing Ministry of Industry and Information Technology Beijing China

Abstract

AbstractRecent magnetospheric observations and three‐dimensional (3D) kinetic simulations have shown that plasma wave activities are significantly enhanced around the reconnection x‐line, implying that the reconnection process is fully 3D. However, how the turbulence affects the local reconnection process has been poorly understood so far. We find by means of large‐scale particle‐in‐cell simulation in 3D system that the local reconnection rate can be significantly enhanced, reaching 0.4, which is much larger than theoretical predictions for two‐dimensional (2D) reconnection. The large reconnection rate is associated with large energy conversion rate and strong electron acceleration. The enhancement of the reconnection rate is caused by local increases of electron momentum transport and pressure gradient force induced by turbulence, which can not occur in 2D system. The result is expected to give better interpretations to in‐situ satellite observations where magnetic reconnection proceeds in 3D system.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3