Affiliation:
1. Department of Earth, Environmental and Planetary Sciences Institute at Brown for Environment and Society Brown University Providence RI USA
2. Now at Department of Earth and Planetary Sciences Harvard University Cambridge MA USA
Abstract
AbstractLake methane emissions are commonly upscaled from lake area, with recognition that smaller, non‐inventoried lakes emit more per unit area. There is also growing awareness of the importance of lake aquatic vegetation and potential “double‐counting” with wetlands, but lack of consensus on which is most impactful. Here, we combine high‐resolution data with the comprehensive lake inventory HydroLAKES to rank these three variables based on emissions sensitivity. Including non‐inventoried small lakes <0.1 km2 (+30 [range: 9.0 to 82]% change) is greatest, followed by double‐counting (−20 [−11 to −34]%) and lake aquatic vegetation (+14 [2.7 to 43]%). Significantly, emissions from non‐inventoried lakes contribute far less than the ∼40% previously determined globally through statistical area extrapolation. We produce a first pan‐Arctic estimate of lake aquatic vegetation in 1.37 million km2 of lakes, but after correcting for persistent double‐counting, its net effect is to decrease emissions estimates by 9%. Thus, previous global emissions estimates are likely too high.
Funder
National Aeronautics and Space Administration
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献