Affiliation:
1. Harvard John A. Paulson School of Engineering and Applied Sciences Cambridge MA USA
2. Department of Environmental Health Harvard School of Public Health Boston MA USA
Abstract
AbstractVolcanism is the largest natural source of mercury (Hg) to the biosphere. However, past Hg emission estimates have varied by three orders of magnitude. Here, we present an updated central estimate and interquartile range (232 Mg a−1; IQR: 170–336 Mg a−1) for modern volcanic Hg emissions based on advances in satellite remote sensing of sulfur dioxide (SO2) and an improved method for considering uncertainty in Hg:SO2 emissions ratios. Atmospheric modeling shows the influence of volcanic Hg on surface atmospheric concentrations in the extratropical Northern Hemisphere is 1.8 times higher than in the Southern Hemisphere. Spatiotemporal variability in volcanic Hg emissions may obscure atmospheric trends forced by anthropogenic emissions at some locations. This should be considered when selecting monitoring sites to inform global regulatory actions. Volcanic emission estimates from this work suggest the pre‐anthropogenic global atmospheric Hg reservoir was 580 Mg, 7‐fold lower than in 2015 (4,000 Mg).
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献