Landforms Associated With the Aspect‐Controlled Exhumation of Crater‐Filling Alluvial Strata on Mars

Author:

Cardenas Benjamin T.1ORCID,Stacey Kaitlyn1ORCID

Affiliation:

1. Department of Geosciences The Pennsylvania State University University Park PA USA

Abstract

AbstractFluvial channel belts, the deposits accumulated in rivers surrounded by floodplain deposits, are sensitive environmental recorders. Across Mars, wind has exposed ancient channel belts via the preferential erosion of floodplain strata, creating landforms called fluvial ridges. However, river deposits observed by the Mars rover Curiosity are instead exposed along a series of steep slopes and shallow benches, and short, truncated ridges we call noses. Here, we tested the hypothesis that these exposures record channel‐belt exhumation with a preferential direction of scarp retreat (a slope‐aspect control), in contrast with models of fluvial‐ridge formation. Using a landscape evolution model sensitive to lithology and an Earth‐analog 3D‐seismic‐reflectance volume imaging fluvial stratigraphy, we generated synthetic erosional landscapes where channel‐belt exhumation created benches and noses rather than fluvial ridges, depending on the orientation of belts relative to the preferential direction of scarp retreat, which we suggest is set by winds steered along crater topography.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3