Affiliation:
1. Department of Atmospheric Sciences Texas A&M University College Station TX USA
2. Now at Department of Atmospheric Science University of Wyoming WY Laramie USA
Abstract
AbstractImpacts of small‐scale surface irregularities, or surface roughness, of atmospheric ice crystals on lidar backscattering properties are quantified. Geometric ice crystal models with various degrees of surface roughness and state‐of‐the‐science light‐scattering computational capabilities are utilized to simulate the single‐scattering properties across the entire practical size parameter range. The simulated bulk lidar and depolarization ratios of polydisperse ice crystals at wavelength 532 nm are strongly sensitive to the degree of surface roughness. Comparisons of these quantities between the theoretical simulations and counterparts inferred from spaceborne lidar observations for cold cirrus clouds suggest a typical surface‐roughness‐degree range of 0.03–0.15 in the cases of compact hexagonal ice crystals, which is most consistent with direct measurements of scanning electron microscopic images. To properly interpret lidar backscattering observations of ice clouds, it is necessary to account for the degree of surface roughness in light‐scattering computations involving ice crystals.
Funder
National Aeronautics and Space Administration
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献