A Customized Multi‐Scale Deep Learning Framework for Storm Nowcasting

Author:

Yang Shangshang12,Yuan Huiling12ORCID

Affiliation:

1. School of Atmospheric Sciences Key Laboratory of Mesoscale Severe Weather/Ministry of Education Nanjing University Nanjing China

2. Key Laboratory of Radar Meteorology China Meteorology Administration Nanjing China

Abstract

AbstractStorm nowcasting is critical and urgently needed. Recent advances in deep learning (DL) have shown potential for improving nowcasting accuracy and predicting general low‐intensity precipitation events. However, DL models yield poor performance on high‐impact storms due to insufficient extraction and characterization of complex multi‐scale spatiotemporal variations of storms. To tackle this challenge, we propose a novel customized multi‐scale (CM) DL framework, including a flexible attention module capturing scale variations and a customized loss function ensuring multi‐scale spatiotemporal consistency. The CM framework was applied to the storm event imagery data set (SEVIR). Representative cases indicate that the CM framework preserves the shape of storms and adequately forecasts intense storms even for longer predictions. The quantitative evaluation shows that all models applying our framework can improve skill scores by 8.5%–42.6% for 1‐hr nowcasting. This work highlights the importance of modeling multi‐scale spatiotemporal characteristics of meteorological variables when using DL.

Funder

National Natural Science Foundation of China

Nanjing University

Jiangsu Collaborative Innovation Center for Climate Change

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3