Knee Point‐Based Multiobjective Optimization for the Numerical Weather Prediction Model in the Greater Beijing Area

Author:

Wang Heng1ORCID,Mo Hongsu1,Di Zhenhua2ORCID,Liu Rui1,Lang Yang3ORCID,Duan Qingyun4ORCID

Affiliation:

1. Chongqing Key Laboratory of GIS Application Research School of Geography and Tourism Chongqing Normal University Chongqing China

2. State Key Laboratory of Earth Surface Processes and Resource Ecology Faculty of Geographical Science Beijing Normal University Beijing China

3. School of Earth Science Yunnan University Kunming China

4. The National Key Laboratory of Water Disaster Prevention College of Hydrology and Water Resources Hohai University Nanjing China

Abstract

AbstractDetermination of the optimal parameter values in numerical weather prediction (NWP) models has a significant impact on predictions. Here, we propose a knee point‐based multiobjective optimization (KMO) method to find an optimal solution of the NWP model parameters. We apply it to optimize the Weather Research and Forecasting (WRF) model's summer precipitation and temperature simulations for the Greater Beijing area. The results showed that it required fewer than 125 samples (i.e., 25 times the number of dimensions of the parameter space) to obtain the WRF model's optimal parameter values. The optimal parameters determined by KMO outperform the default parameters in WRF simulations for summer precipitation and temperature prediction in the Greater Beijing area, across all periods (calibration, validation, and testing). Additionally, clear physical interpretations are provided to explain why the optimal parameters lead to improved precipitation and temperature forecasting. Overall, the proposed method is effective and efficient to improve NWP.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3