Affiliation:
1. Department of Earth and Planetary Sciences University of California, Santa Cruz Santa Cruz CA USA
2. Program for Atmospheric and Oceanic Sciences Princeton University Princeton NJ USA
Abstract
AbstractRadiative feedbacks govern the Earth's climate sensitivity and elucidate the geographic patterns of climate change in response to a carbon‐dioxide forcing. We develop an analytical model for patterned radiative feedbacks that depends only on changes in local surface temperature. The analytical model combines well‐known moist adiabatic theory with the radiative‐advective equilibrium that describes the energy balance in high latitudes. Together with a classic analytical function for surface albedo, all of the non‐cloud feedbacks are represented. The kernel‐based analytical feedbacks reproduce the feedbacks diagnosed from global climate models at the global, zonal‐mean, and seasonal scales, including in the polar regions, though with less intermodel spread. The analytical model thus provides a framework for a quantitative understanding of radiative feedbacks from simple physics, independent of the detailed atmospheric and cryospheric responses simulated by comprehensive climate models.
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献