Global Precipitation Correction Across a Range of Climates Using CycleGAN

Author:

McGibbon J.1ORCID,Clark S. K.12ORCID,Henn B.1ORCID,Kwa A.1ORCID,Watt‐Meyer O.1ORCID,Perkins W. A.1,Bretherton C. S.1ORCID

Affiliation:

1. Allen Institute for Artificial Intelligence Seattle WA USA

2. Geophysical Fluid Dynamics Laboratory Princeton NJ USA

Abstract

AbstractAccurate precipitation simulations for various climate scenarios are critical for understanding and predicting the impacts of climate change. This study employs a Cycle‐generative adversarial network (CycleGAN) to improve global 3‐hr‐average precipitation fields predicted by a coarse grid (200 km) atmospheric model across a range of climates, morphing them to match their statistical properties with those of reference fine‐grid (25 km) simulations. We evaluate its performance on both the target climates and an independent ramped‐SST simulation. The translated precipitation fields remove most of the biases simulated by the coarse‐grid model in the mean precipitation climatology, the cumulative distribution function of 3‐hourly precipitation, and the diurnal cycle of precipitation over land. These results highlight the potential of CycleGAN as a powerful tool for bias correction in climate change simulations, paving the way for more reliable predictions of precipitation patterns across a wide range of climates.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3