Affiliation:
1. Program in Atmospheric and Oceanic Sciences Princeton University Princeton NJ USA
2. Courant Institute of Mathematical Sciences New York University New York NY USA
3. NOAA Geophysical Fluid Dynamics Laboratory Princeton NJ USA
Abstract
AbstractThe use of coarse resolution and strong grid‐scale dissipation has prevented global ocean models from simulating the correct kinetic energy level. Recently parameterizing energy backscatter has been proposed to energize the model simulations. Parameterizing backscatter reduces long‐standing North Atlantic sea surface temperature (SST) and associated surface current biases, but the underlying mechanism remains unclear. Here, we apply backscatter in different geographic regions to distinguish the different physical processes at play. We show that an improved Gulf Stream path is due to backscatter acting north of the Grand Banks to maintain a strong deep western boundary current. An improved North Atlantic Current path is due to backscatter acting around the Flemish Cap, with likely an improved nearby topography‐flow interactions. These results suggest that the SST improvement with backscatter is partly due to the resulted strengthening of resolved currents, whereas the role of improved eddy physics requires further research.
Funder
National Science Foundation
National Oceanic and Atmospheric Administration
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献