Affiliation:
1. University Brest CNRS Ifremer IRD Laboratoire d’Océanographie Physique et Spatiale (LOPS) IUEM Plouzané France
2. Geoscience and Remote Sensing Civil Engineering and Geosciences Delft University of Technology Delft The Netherlands
Abstract
AbstractTwo air‐sea interaction quantification methods are employed on synthetic aperture radar (SAR) scenes containing atmospheric‐turbulence signatures. Quantification performance is assessed on Obukhov length L, an atmospheric surface‐layer stability metric. The first method correlates spectral energy at specific turbulence‐spectrum wavelengths directly to L. Improved results are obtained from the second method, which relies on a machine‐learning algorithm trained on a wider array of SAR‐derived parameters. When applied on scenes containing convective signatures, the second method is able to predict approximately 80% of observed variance with respect to validation. Estimated wind speed provides the bulk of predictive power while parameters related to the kilometer‐scale distribution of spectral energy contribute to a significant reduction in prediction errors, enabling the methodology to be applied on a scene‐by‐scene basis. Differences between these physically based estimates and parameterized numerical models may guide the latter's improvement.
Funder
European Space Agency
European Research Council
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics