Affiliation:
1. Department of Geosciences University of Arizona Tucson AZ USA
2. National Center for Atmospheric Research Boulder CO USA
Abstract
AbstractThe newly developed paleo‐climate calibrated Community Earth System Model, version 2 (pCESM2) simulates a more realistic global temperature response to external forcing compared to the standard CESM2. Here we show that the code modifications in pCESM2 result in increased atmospheric convection and a northward shift of the Atlantic and eastern Pacific Intertropical Convergence Zones. These changes are exacerbated under Last Glacial Maximum forcing, resulting in tropical precipitation changes that are inconsistent with both proxy data evidence and simulations with other contemporary models. Similar model‐data disagreements are also present in the standard CESM2. Thus, more work is needed to improve the simulated Last Glacial Maximum hydroclimate response in CESM2. We further suggest that well‐constrained paleo climates should be given a larger emphasis in model development more broadly, as these climates can help identify issues with model parameterizations under altered forcing and thus improve the fidelity of simulations of past, present, and future climates.
Funder
National Science Foundation
National Center for Atmospheric Research
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Geochemical approaches to reconstructing Earth's hydroclimates;Reference Module in Earth Systems and Environmental Sciences;2024