Quantifying the Efficiency of Stratospheric Aerosol Geoengineering at Different Altitudes

Author:

Lee Walker R.1ORCID,Visioni Daniele12ORCID,Bednarz Ewa M.134ORCID,MacMartin Douglas G.1ORCID,Kravitz Ben56ORCID,Tilmes Simone2ORCID

Affiliation:

1. Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca NY USA

2. Atmospheric Chemistry, Observations, and Modeling Lab National Center for Atmospheric Research Boulder CO USA

3. Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado Boulder Boulder CO USA

4. NOAA Chemical Sciences Laboratory (NOAA CSL) Boulder CO USA

5. Department of Earth and Atmospheric Sciences Indiana University Bloomington IN USA

6. Atmospheric Sciences and Global Change Division Pacific Northwest National Laboratory Richland WA USA

Abstract

AbstractStratospheric aerosol injection (SAI) of reflective sulfate aerosols has been proposed to temporarily reduce the impacts of global warming. In this study, we compare two SAI simulations which inject at different altitudes to provide the same amount of cooling, finding that lower‐altitude SAI requires 64% more injection. SAI at higher altitudes cools the surface more efficiently per unit injection than lower‐altitude SAI through two primary mechanisms: the longer lifetimes of SO2 and SO4 at higher altitudes, and the water vapor feedback, in which lower‐altitude SAI causes more heating in the tropical cold point tropopause region, thereby increasing water vapor transport into the stratosphere and trapping more terrestrial infrared radiation that offsets some of the direct aerosol‐induced cooling. We isolate these individual mechanisms and find that the contribution of lifetime effects to differences in cooling efficiency is approximately five to six times larger than the contribution of the water vapor feedback.

Funder

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3