The Energy Decay of Warm‐Core Eddies in the Gulf of Mexico

Author:

Meunier Thomas1ORCID,Bower Amy1ORCID,Pérez‐Brunius Paula2,Graef Federico2ORCID,Mahadevan Amala1ORCID

Affiliation:

1. Woods Hole Oceanographic Institution Woods Hole MA USA

2. CICESE Ensenada Mexico

Abstract

AbstractThe Gulf of Mexico (GoM) is home to some of the most energetic eddies in the ocean. Warm‐core rings detach from the Loop‐Current and drift through the basin, transporting large amounts of heat and salt. These eddies, known as Loop Current rings (LCRs) have a crucial role in the GoM's dynamics and in the weather of the eastern US, and this role is largely conditioned by their longevity and decay properties. Here, we use an empirical method to estimate the energy evolution of all LCRs detached since 1993. We found that, contrary to the commonly accepted idea that LCRs conserve their energy as they drift through the GoM and decay suddenly against the western platform, LCRs' energy decay is faster in the eastern basin, and they typically lose three‐quarter of their energy before encountering the continental shelf. We also show that wind‐current feedback contributes to the energy decay and conversion.

Funder

Gulf Research Program

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mesoscale eddies in the Gulf of Mexico: A three-dimensional characterization based on global HYCOM;Deep Sea Research Part II: Topical Studies in Oceanography;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3