Retrieving Precipitable Water Vapor Over Land From Satellite Passive Microwave Radiometer Measurements Using Automated Machine Learning

Author:

Xia Xinran12,Fu Disong23,Shao Wei1ORCID,Jiang Rubin24ORCID,Wu Shengli5ORCID,Zhang Peng5,Yang Dazhi6ORCID,Xia Xiangao234ORCID

Affiliation:

1. School of Hydrology and Water Resources Nanjing University of Information Science and Technology Nanjing China

2. LAGEO Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China

3. University of Chinese Academy of Sciences Beijing China

4. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC‐FEMD) Nanjing University of Information Science & Technology Nanjing China

5. National Satellite Meteorological Center Chinese Meteorological Administration Beijing China

6. School of Electrical Engineering and Automation Harbin Institute of Technology Harbin China

Abstract

AbstractAccurately retrieving precipitable water vapor (PWV) over wide‐area land surface remains challenging. Unlike passive infrared remote sensing, passive microwave (PMW) remote sensing provides almost all‐weather PWV retrievals. This study develops a PMW‐based land PWV retrieval algorithm using automated Machine learning (ML) (AutoML). Data from the Advanced Microwave Scanning Radiometer 2 serve as the main predictor variables and high‐quality Global Positioning System (GPS) PWV data as the target variable. Unprecedentedly large GPS training samples (over 50 million) from more than 12,000 stations worldwide are used to train the AutoML model. New predictors with clear physical mechanisms enable PWV retrieval over almost any land surface type, including snow cover and near open water. Validation shows good agreement between PWV retrievals and ground observations, with a root mean square error of 3.1 mm. This encouraging outcome highlights the potential of the algorithm for application with other PMW radiometers with similar wavelengths.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3