Affiliation:
1. Key Laboratory of Polar Atmosphere‐Ocean‐Ice System for Weather and Climate, Ministry of Education & Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences Fudan University Shanghai China
2. Shanghai Frontiers Science Center of Atmosphere‐Ocean Interaction Fudan University Shanghai China
Abstract
AbstractThe cold Eurasia has been proposed to be closely linked to the weakening of the stratospheric polar vortex (SPV), however, how the Arctic sea ice modulates the surface impacts of the weak SPV is unclear. This study explores the critical modulating role of reduced Arctic sea ice in the surface cooling response to SPV stretching events in autumn. Here, through ERA5 reanalysis and Whole Atmosphere Community Climate Model simulations, we show that Eurasian cold events are more likely (45%) to occur in days 30–50 after the onset of SPV stretching events under lower Barents‐Kara Seas (BKS) sea ice conditions, in contrast to under heavy BKS sea ice conditions when robust surface cooling is absent. The stratospheric and tropospheric pathways explain 46.8% and 53.2% of the total variance of Siberian coldness, respectively. The downward extension of anomalous stratospheric wave‐2 ridge to the troposphere intensifies the Arctic‐North European high, favoring the subsequent colder Siberia.
Publisher
American Geophysical Union (AGU)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献