Evaluating and Enhancing Snow Compaction Process in the Noah‐MP Land Surface Model

Author:

Abolafia‐Rosenzweig Ronnie1ORCID,He Cenlin1ORCID,Chen Fei2ORCID,Barlage Michael3ORCID

Affiliation:

1. NSF National Center for Atmospheric Research Boulder CO USA

2. Division of Environment and Sustainability The Hong Kong University of Science and Technology Hong Kong China

3. NOAA Environmental Modeling Center (EMC) College Park MD USA

Abstract

AbstractThe accuracy of snow density in land surface model (LSM) simulations impacts the accuracy of simulated terrestrial water and energy budgets. However, there has been little research that has focused on enhancing snow compaction in operationally used LSMs. A baseline snow simulation with the widely used Noah‐MP LSM systematically overestimates snow depth by 55 mm even after removing daily snow water equivalent (SWE) biases. To reduce uncertainties associated with snow compaction, we enhance the most sensitive Noah‐MP snow compaction parameter—the empirical parameter for compaction due to overburden (Cbd)—such that Cbd is calculated as a function of surface air temperature as opposed to a fixed value in the baseline simulation. This enhancement improves accuracy in simulated snow compaction across the majority of western U.S. (WUS) SNOTEL test sites (biases reduced at 88% of test sites), with modest bias reductions in cooler accumulation periods (biases reduced at 70% of test sites) and substantial improvements during warmer ablation periods (biases reduced at 99% of test sites). Relatively larger improvements during warm conditions are attributable to the default Cbd value being reasonable for cold temperatures (≤−5°C). Improvements in simulated snow depth and density with observations outside of the training sites and optimization periods support that the snow compaction enhancement is transferable in space and time. Differences between enhanced and baseline gridded simulations across the total WUS support that the enhancement can have important impacts on snowpack evolution, snow albedo feedback, and snow hydrology.

Funder

Climate Program Office

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3