Thermoelastic Properties of B2‐Type FeSi Under Deep Earth Conditions: Implications for the Compositions of the Ultralow‐Velocity Zones and the Inner Core

Author:

Liu Tao1,Jing Zhicheng1ORCID

Affiliation:

1. Department of Earth and Space Sciences Southern University of Science and Technology Shenzhen China

Abstract

AbstractThe CsCl‐type (B2) phase of FeSi (B2‐FeSi) has been proposed as a candidate phase in the ultralow‐velocity zones (ULVZs) at the base of the lower mantle and in the Earth's inner core. However, the elastic properties of B2‐FeSi under relevant conditions remain unclear. Here we determine the density, elastic constants, and velocities of B2‐FeSi at high pressures (90–390 GPa) and temperatures (3,000–6,000 K) relevant to the Earth's lower most mantle and the inner core, using first‐principles molecular dynamics simulations. At the base of the lower mantle, B2‐FeSi shows significantly lower velocities and a higher density than those of the ambient mantle. Mechanical mixing models suggest the presence of ∼27–39 vol% B2‐FeSi in the silicate mantle is consistent with the reduced velocities and the elevated density of ULVZs observed seismically. On the other hand, the hcp‐Fe and B2‐FeSi mixture exhibits higher bulk sound velocity compared to the PREM under inner core conditions. Adding superionic H in the interstitial sites of B2‐FeSi lowers its density but has little effect on the bulk sound velocity of B2‐FeSi, precluding H‐bearing B2‐FeSi as a major component in the Earth's inner core.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3