Thermal Equation of State and Structural Evolution of Al‐Bearing Bridgmanite

Author:

Criniti Giacomo12ORCID,Boffa Ballaran Tiziana1,Kurnosov Alexander1ORCID,Liu Zhaodong3ORCID,Glazyrin Konstantin4ORCID,Merlini Marco5,Hanfland Michael6,Frost Daniel J.1ORCID

Affiliation:

1. Bayerisches Geoinstitut Universität Bayreuth Universitätstraße 30 Bayreuth Germany

2. Now at Earth and Planets Laboratory Carnegie Institution for Science Washington DC USA

3. State Key Laboratory of Superhard Materials Jilin University Changchun China

4. Deutsches Elektronen‐Synchrotron DESY Hamburg Germany

5. Dipartimento di Scienze della Terra Università degli Studi di Milano Via Botticelli 23 Milano Italy

6. ESRF – European Synchrotron Radiation Facility Grenoble France

Abstract

Abstract(Mg, Fe, Al)(Si, Al)O3 bridgmanite is the most abundant mineral of Earth′s lower mantle. Al is incorporated in the crystal structure of bridgmanite through the Fe3+AlO3 and AlAlO3 charge coupled (CC) mechanisms, and the MgAlO2.5 oxygen vacancy (OV) mechanism. Oxygen vacancies are believed to cause a substantial decrease of the bulk modulus of aluminous bridgmanite based on first‐principles calculations on the MgAlO2.5 end‐member. However, there is no conclusive experimental evidence supporting this hypothesis due to the uncertainties on the chemical composition, crystal chemistry, and/or high‐pressure behavior of samples analyzed in previous studies. Here, we synthesized high‐quality single crystals of bridgmanite in the MgO–AlO1.5–SiO2 system with different bulk Al contents and degrees of CC and OV substitutions. Suitable crystals with different compositions were loaded in resistively heated diamond anvil cells and analyzed by synchrotron X‐ray diffraction at pressures up to approximately 80 GPa at room temperature and 35 GPa at temperatures up to 1,000 K. Single‐crystal structural refinements at high pressure show that the compressibility of bridgmanite is mainly controlled by Al–Si substitution in the octahedral site and that oxygen vacancies in bridgmanite have no detectable effect on the bulk modulus in the compositional range investigated here, which is that relevant to a pyrolytic lower mantle. The proportion of oxygen vacancies in Al‐bearing bridgmanite has been calculated using a thermodynamic model constrained using experimental data at 27 GPa and 2,000 K for an Fe‐free system and extrapolated to pressures equivalent to 1,250 km depth using the thermoelastic parameters of Al‐bearing bridgmanite determined in this study.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3