Basal Mantle Flow Over LLSVPs Explains Differences in Pacific and Indo‐Atlantic Hotspot Motions

Author:

Bellas‐Manley A.12ORCID,Royden L.2ORCID

Affiliation:

1. Department of Aerospace Engineering Sciences University of Colorado Boulder Boulder CO USA

2. Department of Earth Atmospheric and Planetary Sciences Massachusetts Institute of Technology Cambridge MA USA

Abstract

AbstractSurface hotspot motions are approximately a factor of two faster in the Pacific than the Indo‐Atlantic, and the Indo‐Atlantic large low shear velocity province (LLSVP) appears to be significantly taller than the Pacific LLSVP. Hypothesizing that surface hotspot motions are correlated with the motion of plume sources on the upper surface of chemically distinct, intrinsically dense LLSVPs, we use 3D spherical mantle convection models to compute the velocity of plume sources and compare with observed surface hotspot motions. No contrast in the mean speed of Pacific and Indo‐Atlantic hotspots is predicted if the LLSVPs are treated as purely thermal anomalies and plume sources move laterally across the core‐mantle boundary. However, when LLSVP topography is included in the model, the predicted hotspot speeds are, on average, faster in the Pacific than the Indo‐Atlantic, even when modest topography is assigned to both LLSVPs (e.g., 100–300 km). The difference in mean hotspot speed increases to a factor of two for larger and laterally variable LLSVP topography estimated from seismic tomographic model S40RTS (up to 1,100–1,500 km for the Indo‐Atlantic region vs. 700–1,400 km for the Pacific region) and our results also broadly reproduce the convergence of Pacific hotspots toward the center of the Pacific LLSVP. These largescale features of global hotspot motions are only reproduced when ambient mantle material flows over large, relatively stable topographical features, suggesting that LLSVPs are chemically distinct and intrinsically dense relative to ambient mantle material.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3