Stable Zirconium Isotopic Compositions of the Metasomatized Mantle

Author:

Zou Zongqi1ORCID,Xu Yi‐Gang12ORCID,Wang Zaicong3ORCID,Hu Chuyu34,Feng Lanping3,Guo Jing‐Liang3ORCID,Zhang Wen3,Ma Liang1,Hu Zhaochu3,Liu Yongsheng3ORCID

Affiliation:

1. State Key Laboratory of Isotope Geochemistry Guangzhou Institute of Geochemistry Chinese Academy of Sciences Guangzhou China

2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China

3. State Key Laboratory of Geological Processes and Mineral Resources School of Earth Sciences China University of Geosciences Wuhan China

4. School of Earth and Space Sciences Peking University Beijing China

Abstract

AbstractMantle metasomatism, which affects the geochemical and lithological properties of the Earth, is crucial to the evolution and modification of the Earth's interior. Variations in chemical proxy of metasomatism, including high‐field strength elements (HFSE, e.g., Zr‐Ti isotopes and isovalent Zr‐Hf), have been commonly utilized as a tool to unravel the processes associated with the evolution of the Earth. However, the impact of mantle metasomatism by diverse agents on the Zr isotopic compositions of metasomatized mantle remains poorly understood. Here we carried out high‐precision double‐spike δ94/90Zr measurements for a suite of basalts, which were derived from the mantle sources metasomatized by typical metasomatic agents of fluid, silicate melt and carbonate melt originating from the deep mantle or recycled crustal materials. Mantle metasomatism results in lithological diversities within the mantle, ranging from hybridized peridotites to pyroxenite/eclogite and carbonated eclogite, which can significantly fractionate the isovalent HFSEs. However, our data show that these basalts have primitive mantle‐like δ94ZrNIST values (−0.033–0.043 ‰), regardless of their superchondritic Zr/Hf. The primitive mantle‐like δ94ZrNIST, irrelevant to any proxy of metasomatism (e.g., Sr‐Nd isotopes, Zr/Hf and La/Sm), indicate that mantle metasomatism and subsequence melting produce no measurable Zr isotopic variations in metasomatized mantle‐derived basalts. The δ94ZrNIST of basalts thus can be representative of the mean metasomatized mantle compositions. Combined with previously reported komatiites and oceanic basalts, we show that the Earth's mantle displays consistent δ94ZrNIST (−0.013 ± 0.053 ‰), even if it has a secular dynamic evolution with the interaction between Earth's exterior and interior.

Funder

China Postdoctoral Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3