Effect of Asymmetric Topography on Rupture Propagation Along Fault Stepovers

Author:

Douilly Roby1ORCID

Affiliation:

1. University of California Riverside CA USA

Abstract

AbstractComplex fault systems are often located in regions with asymmetric topography on one side of a fault, and these systems are very common in Southern California. Along these fault systems, geometrical complexities such as stepovers can impact fault rupture. Previous rupture dynamic studies have investigated the effect of stepover widths on throughgoing rupture, but these studies didn't examine the influence of topography on the rupture behavior. To investigate the effect of asymmetric topography on rupture dynamics at stepovers, I consider three cases: (a) a flat topography, (b) a positive (mountain), and (c) a negative (basin) topography on only one side of the fault system outside of the stepover. In each case, I use the 3D finite element method to compute the rupture dynamics of these fault systems. The results show a significant time dependent variation of the normal stress for the topography cases as opposed to the flat surface case, which can have an important impact on rupture propagation at the stepover. For a positive topography on the right of the rupture propagation, there is a clamping effect behind the rupture front that prevents the rupture to jump a wider extensional stepover. The opposite is observed for a negative topography or for a positive topography on the left side of the rupture propagation, where the rupture can jump over a wider compressional stepover. These results suggest that topography should be considered in dynamic studies with geometric complexities such as stepovers, and perhaps bends and branched fault systems.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3