Thermal Evolution of the Lithosphere‐Asthenosphere Boundary Beneath Arc and Its Geodynamic Implications: Depth Variation of Thermal Histories of Mantle Xenoliths From Ichinomegata, Northeast Japan

Author:

Sato Yuto12ORCID,Ozawa Kazuhito3ORCID

Affiliation:

1. Guangzhou Institute of Geochemistry Chinese Academy of Science Guangzhou China

2. CAS Center for Excellence in Deep Earth Science Guangzhou China

3. Atmosphere and Ocean Research Institute University of Tokyo Kashiwanoha Japan

Abstract

AbstractQuantitative reconstruction of thermal history recorded in mantle xenoliths is imperative for understanding the temporal change of thermal state and dynamics of the lithosphere‐asthenosphere boundary (LAB). We challenged this problem in the arc settings by examining nine spinel peridotite xenoliths from Ichinomegata maar in the back‐arc side of Northeast Japan Arc. Extensive mineral chemical analyses combined with the derivation depths of the xenoliths revealed a depth‐dependent variation of chemical zoning patterns in olivine and pyroxenes. The depth variation of thermal histories of the Ichinomegata xenoliths was decoded by applying diffusion‐controlled reaction modeling to reproduce the zoning patterns. The decoded thermal events in the order of occurrence are (a) ∼14 million years of cooling causing lithosphere thickening up to ∼55 km depth, (b) subsequent ∼12 thousand years of heating from the underlying asthenosphere resulting in lithosphere thinning up to the depths of ∼40 km, and (c) 1–68 days of heating during xenolith transportation by the host magma. The duration of the lithosphere thickening is consistently explained by the period of the Japan Sea opening. On the other hand, the timescale of the lithosphere thinning is too short to be explained by heat conduction through the ∼15 km thick LAB and requires a more effective heat transportation mechanism such as direct magma injection into the LAB or significant viscosity reduction of the mantle peridotite aided by the pervasive permeable flow of silicate melt.

Funder

Japan Society for the Promotion of Science

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3