An Updated Fault Coupling Model Along Major Block‐Bounding Faults on the Eastern and Northeastern Tibetan Plateau From a Stress‐Constrained Inversion of GPS and InSAR Data

Author:

Zhao Dezheng12ORCID,Qu Chunyan1ORCID,Shan Xinjian1ORCID,Gong Wenyu1ORCID,Weng Huihui2,Chen Han1ORCID,Wu Donglin1

Affiliation:

1. State Key Laboratory of Earthquake Dynamics China Earthquake Administration Institute of Geology Beijing China

2. State Key Laboratory for Mineral Deposits Research School of Earth Sciences and Engineering Nanjing University Nanjing China

Abstract

AbstractLarge block‐bounding faults on the Tibetan plateau are significant geological structures that accommodate tectonic movements and accumulate stress, leading to large earthquakes. Quantifying the interseismic slip deficit rate helps to better assess the earthquake potential. We combine available InSAR (2015–2020) and interseismic GPS data to determine fault coupling along 14 major block‐bounding faults. Spatially dense InSAR measurements remarkably improve the resolution of the coupling model. Combined with a GPS‐constrained block model, we examine the performance of the inversion approach with the stress constraint and the common Laplacian smoothing based on both synthetic tests and real data. We suggest that, for continental strike‐slip faults, adding the stress constraint can mitigate unphysical coupling distributions due to unreasonable assumptions or modeling artifacts, reducing the model uncertainty and improving the accuracy of the coupling model. This is particularly useful for segments featured by a highly heterogeneous distribution of coupling along the transition zone from locking to creeping region, partially‐coupling segment, and junction zone between main and subsidiary faults. We present a large‐scale fault coupling map along the major block‐bounding faults on the northeastern and eastern Tibetan plateau, highlighting the distinct degrees of fault coupling and lateral variations. The collage of coupling maps along different faults demonstrates the kinematic features over a broad time scale during earthquake cycles ranging from early to late interseismic phases, such as the segments ruptured during the 2001 Kokoxili earthquake and the 1920 Haiyuan earthquake.

Funder

National Natural Science Foundation of China

China Earthquake Administration

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3